Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; : e202400130, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427966

RESUMO

In this study, we examine the adiabat-to-diabat (ATD) angles for trajectories in 2-dimensional vibrational subspace of the seam space of two degenerate states. In circulating around the tangential touching degeneracy center, the ATD angle is changed by 2 π ${2\pi }$ or 0, similar to the Renner-Teller problem and the pseudo-Jahn-Teller problem, respectively. These ATD angle profiles may be indistinguishable from those of circulating multiple conical intersections or a pseudo-Jahn-Teller center. Methods to discern those seemingly indistinguishable cases are proposed. A sharp zigzag variation of the ATD angle is seen as a feature for trajectories that graze a pseudo-Jahn-Teller-type tangential touching center, in contrast to the monotonic steep variation for grazing a conical intersection or a Renner-Teller-type tangential touching center.

2.
J Chem Phys ; 160(9)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38426527

RESUMO

A time-dependent vibrational electronic coupled-cluster (VECC) approach is proposed to simulate photo-electron/UV-VIS absorption spectra as well as time-dependent properties for non-adiabatic vibronic models, going beyond the Born-Oppenheimer approximation. A detailed derivation of the equations of motion and a motivation for the ansatz are presented. The VECC method employs second-quantized bosonic construction operators and a mixed linear and exponential ansatz to form a compact representation of the time-dependent wave-function. Importantly, the method does not require a basis set, has only a few user-defined inputs, and has a classical (polynomial) scaling with respect to the number of degrees of freedom (of the vibronic model), resulting in a favorable computational cost. In benchmark applications to small models and molecules, the VECC method provides accurate results compared to multi-configurational time-dependent Hartree calculations when predicting short-time dynamical properties (i.e., photo-electron/UV-VIS absorption spectra) for non-adiabatic vibronic models. To illustrate the capabilities, the VECC method is also successfully applied to a large vibronic model for hexahelicene with 14 electronic states and 63 normal modes, developed in the group by Aranda and Santoro [J. Chem. Theory Comput. 17, 1691, (2021)].

3.
J Chem Phys ; 158(11): 114120, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36948803

RESUMO

We report further investigations to aid the development of a Laplace MP2 (second-order Møller Plesset) method with a range separated Coulomb potential partitioned into short- and long-range parts. The implementation of the method extensively uses sparse matrix algebra, density fitting techniques for the short-range part, and a Fourier transformation in spherical coordinates for the long-range part of the potential. Localized molecular orbitals are employed for the occupied space, whereas virtual space is described by orbital specific virtual orbitals (OSVs) associated with localized molecular orbitals. The Fourier transform is deficient for very large distances between localized occupied orbitals, and a multipole expansion for widely separated pairs is introduced for the direct MP2 contribution, which is applicable also to non-Coulombic potentials that do not satisfy the Laplace equation. For the exchange contribution, an efficient screening of contributing localized occupied pairs is employed, which is discussed more completely here. To mitigate errors due to the truncation of OSVs, a simple and efficient extrapolation procedure is used to obtain results close to MP2 for the full basis set of atomic orbitals Using a suitable set of default parameters, the accuracy of the approach is demonstrated. The current implementation of the approach is not very efficient, and the aim of this paper is to introduce and critically discuss ideas that can have more general applicability beyond MP2 calculations for large molecules.

4.
J Chem Phys ; 155(15): 154104, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34686052

RESUMO

We report the development of a new Laplace MP2 (second-order Møller-Plesset) implementation using a range separated Coulomb potential, partitioned into short- and long-range parts. The implementation heavily relies on the use of sparse matrix algebra, density fitting techniques for the short-range Coulomb interactions, while a Fourier transformation in spherical coordinates is used for the long-range part of the potential. Localized molecular orbitals are employed for the occupied space, whereas orbital specific virtual orbitals associated with localized molecular orbitals are obtained from the exchange matrix associated with specific localized occupied orbitals. The range separated potential is crucial to achieve efficient treatment of the direct term in the MP2, while extensive screening is employed to reduce the expense of the exchange contribution in MP2. The focus of this paper is on controllable accuracy and linear scaling of the data entering the algorithm.

5.
Phys Chem Chem Phys ; 23(35): 19892-19900, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525152

RESUMO

Two prototropic isomers of adenine are formed in an electrospray ion source and are resolved spatially in a differential mobility spectrometer before detection in a triple quadrupole mass spectrometer. Each isomer is gated in CV space before being trapped in the linear ion trap of the modified mass spectrometer, where they are irradiated by the tuneable output of an optical parametric oscillator and undergo photodissociation to form charged fragments with m/z 119, 109, and 94. The photon-normalised intensity of each fragmentation channel is measured and the action spectra for each DMS-gated tautomer are obtained. Our analysis of the action spectra, aided by calculated vibronic spectra and thermochemical data, allow us to assign the two signals in our measured ionograms to specific tautomers of protonated adenine.


Assuntos
Adenina/química , Espectrofotometria Infravermelho , Isomerismo , Fotólise , Prótons , Termodinâmica , Raios Ultravioleta
6.
J Chem Phys ; 153(5): 054303, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770926

RESUMO

An ab initio intermolecular potential energy surface (PES) for the van der Waals complex of H2O-N2 that explicitly incorporates the intramolecular Q2 bending normal mode of the H2O monomer is presented. The electronic structure computations have been carried out at the explicitly correlated coupled cluster theory [CCSD(T)-F12] with an augmented correlation-consistent triple zeta basis set and an additional bond function. Analytic five-dimensional intermolecular PESs for ν2(H2O) = 0 and 1 are obtained by fitting to the multi-dimensional Morse/long-range potential function form. These fits to 40 890 points have the root-mean-square (rms) discrepancy of 0.88 cm-1 for interaction energies less than 2000.0 cm-1. The resulting vibrationally averaged PESs provide good representations of the experimental microwave and infrared data: for microwave transitions of H2O-N2, the rms discrepancy is only 0.0003 cm-1, and for infrared transitions of the A1 symmetry of the H2O(ν2 = 1 ← 0)-N2, the rms discrepancy is 0.001 cm-1. The calculated infrared band origin shifts associated with the ν2 bending vibration of water are 2.210 cm-1 and 1.323 cm-1 for H2O-N2 and D2O-N2, respectively, in good agreement with the experimental values of 2.254 cm-1 and 1.266 cm-1. The benchmark tests and comparisons of the predicted spectral properties are carried out between CCSD(T)-F12a and CCSD(T)-F12b approaches.

7.
J Chem Theory Comput ; 16(7): 4213-4225, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32502351

RESUMO

The numerous existing publications on benchmarking quantum chemistry methods for excited states rarely include Charge Transfer (CT) states, although many interesting phenomena in, e.g., biochemistry and material physics involve the transfer of electrons between fragments of the system. Therefore, it is timely to test the accuracy of quantum chemical methods for CT states, as well. In this study we first propose a new benchmark set consisting of dimers having low-energy CT states. On this set, the vertical excitation energy has been calculated with Coupled Cluster methods including triple excitations (CC3, CCSDT-3, CCSD(T)(a)*), as well as with methods including full or approximate doubles (CCSD, STEOM-CCSD, CC2, ADC(2), EOM-CCSD(2)). The results show that the popular CC2 and ADC(2) methods are much less accurate for CT states than for valence states. On the other hand, EOM-CCSD seems to have similar systematic overestimation of the excitation energies for both types of states. Among the triples methods the novel EOM-CCSD(T)(a)* method including noniterative triple excitations is found to stand out with its consistently good performance for all types of states, delivering essentially EOM-CCSDT quality results.

8.
J Chem Phys ; 150(10): 104106, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30876345

RESUMO

In this work, we present a detailed comparison of wavefunction-based multireference (MR) techniques for the prediction of transition metal L-edge X-ray absorption spectroscopy (XAS) using [Fe(II)Cl4]2- and [Fe(III)Cl4]1- complexes as prototypical test cases. We focus on the comparison of MR Configuration Interaction (MRCI) and MR Equation of Motion Coupled Cluster (MREOM-CC) methods, which are employed to calculate valence excitation as well as core to valence Fe L-edge XAS spectra of [Fe(II)Cl4]2- and [Fe(III)Cl4]1- complexes. The two investigated approaches are thoroughly analyzed with respect to their information content regarding (1) metal-ligand covalency, (2) ligand field splittings, (3) relativistic effects, (4) electron correlation, (5) energy distribution, and (6) intensity modulation of the experimentally observed spectral features. It is shown that at the level of MRCI calculations in both [Fe(II)Cl4]2- and [Fe(III)Cl4]1- cases, very good agreement with the experimental Fe L-edge XAS spectra is obtained provided that the employed active space is extended to include ligand-based orbitals in addition to metal-based molecular orbitals. It is shown that this is necessary in order to correctly describe the important σ- and π- Fe-Cl covalent interactions. By contrast, MREOM-CC calculations yield excellent agreement relative to experiment even with small active spaces. The efficiency of the employed MR computational protocols is thoroughly discussed. Overall, we believe that this study serves as an important reference for future developments and applications of MR methods in the field of X-Ray spectroscopy.

9.
J Chem Phys ; 148(19): 194110, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30307181

RESUMO

We introduce a new path integral Monte Carlo method for investigating nonadiabatic systems in thermal equilibrium and demonstrate an approach to reducing stochastic error. We derive a general path integral expression for the partition function in a product basis of continuous nuclear and discrete electronic degrees of freedom without the use of any mapping schemes. We separate our Hamiltonian into a harmonic portion and a coupling portion; the partition function can then be calculated as the product of a Monte Carlo estimator (of the coupling contribution to the partition function) and a normalization factor (that is evaluated analytically). A Gaussian mixture model is used to evaluate the Monte Carlo estimator in a computationally efficient manner. Using two model systems, we demonstrate our approach to reduce the stochastic error associated with the Monte Carlo estimator. We show that the selection of the harmonic oscillators comprising the sampling distribution directly affects the efficiency of the method. Our results demonstrate that our path integral Monte Carlo method's deviation from exact Trotter calculations is dominated by the choice of the sampling distribution. By improving the sampling distribution, we can drastically reduce the stochastic error leading to lower computational cost.

10.
J Chem Phys ; 148(16): 164102, 2018 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-29716199

RESUMO

We study the performance of the two-determinant (TD) coupled-cluster (CC) method which, unlike conventional ground-state single-reference (SR) CC methods, can, in principle, provide a naturally spin-adapted treatment of the lowest-lying open-shell singlet (OSS) and triplet electronic states. Various choices for the TD-CC reference orbitals are considered, including those generated by the multi-configurational self-consistent field method. Comparisons are made with the results of high-level SR-CC, equation-of-motion (EOM) CC, and multi-reference EOM calculations performed on a large test set of over 100 molecules with low-lying OSS states. It is shown that in cases where the EOMCC reference function is poorly described, TD-CC can provide a significantly better quantitative description of OSS total energies and OSS-triplet splittings.

11.
J Chem Phys ; 148(5): 054104, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29421891

RESUMO

A similarity-transformed equation-of-motion vibrational coupled-cluster (STEOM-XVCC) method is introduced as a one-mode theory with an effective vibrational Hamiltonian, which is similarity transformed twice so that its lower-order operators are dressed with higher-order anharmonic effects. The first transformation uses an exponential excitation operator, defining the equation-of-motion vibrational coupled-cluster (EOM-XVCC) method, and the second uses an exponential excitation-deexcitation operator. From diagonalization of this doubly similarity-transformed Hamiltonian in the small one-mode excitation space, the method simultaneously computes accurate anharmonic vibrational frequencies of all fundamentals, which have unique significance in vibrational analyses. We establish a diagrammatic method of deriving the working equations of STEOM-XVCC and prove their connectedness and thus size-consistency as well as the exact equality of its frequencies with the corresponding roots of EOM-XVCC. We furthermore elucidate the similarities and differences between electronic and vibrational STEOM methods and between STEOM-XVCC and vibrational many-body Green's function theory based on the Dyson equation, which is also an anharmonic one-mode theory. The latter comparison inspires three approximate STEOM-XVCC methods utilizing the common approximations made in the Dyson equation: the diagonal approximation, a perturbative expansion of the Dyson self-energy, and the frequency-independent approximation. The STEOM-XVCC method including up to the simultaneous four-mode excitation operator in a quartic force field and its three approximate variants are formulated and implemented in computer codes with the aid of computer algebra, and they are applied to small test cases with varied degrees of anharmonicity.

12.
J Chem Theory Comput ; 14(1): 72-91, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29206453

RESUMO

The newly developed back transformed pair natural orbital based similarity transformed equation of motion (bt-STEOM) method at the coupled cluster singles and doubles level (CCSD) is combined with an appropriate modification of our earlier active space selection scheme for STEOM. The resulting method is benchmarked for valence, Rydberg, and charge transfer excited states of Thiel's test set and other test systems. The bt-PNO-STEOM-CCSD method gives very similar results to canonical STEOM-CCSD for both singlet and triplet excited states. It performs in a balanced manner for all these types of excited states, while the EOM-CCSD method performs especially well for Rydberg excited states and the CC2 method excels at obtaining accurate results for valence excited states. Both EOM-CCSD and CC2 perform worse than bt-PNO-STEOM-CCSD for charge transfer states for the test cases studied.

13.
J Chem Phys ; 146(14): 144104, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28411589

RESUMO

Simplifications or modifications of coupled cluster methods such as the CCSD (coupled cluster singles and doubles) model often perform better than the original method in providing the total energy, equilibrium geometries, and harmonic vibration frequencies for the ground state. Three such methods that have been recently proposed include 2CC, parameterized CCSD generalizations, and distinguishable cluster singles and doubles (DCSD) approach. In this paper, we lay the theoretical foundation needed to treat excited states via the equation of motion (EOM) approach using these ground state CC methods. As these ground state approximations to CCSD share its property of being exact for two-electron systems, so will their excited state extensions. These methods are tested for two complementary benchmark sets of excited states for a wide range of organic molecules with focus on singlet and triplet excited states of both valence and Rydberg nature. We also test these methods for doubly excited states, taking CH+ as an example to test their performance at equilibrium and stretched bond geometries. Finally, we assess if any of these methods perform consistently better than EOM CCSD.

14.
J Chem Phys ; 146(7): 074103, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28228040

RESUMO

An efficient scheme for the automatic selection of an active space for similarity transformed equations of motion (STEOM) coupled cluster method is proposed. It relies on state averaged configuration interaction singles (CIS) natural orbitals and makes it possible to use STEOM as a black box method. The performance of the new scheme is tested for singlet and triplet valence, charge transfer, and Rydberg excited states.

15.
Phys Chem Chem Phys ; 18(16): 11263-77, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27052895

RESUMO

We propose a new scheme for time-resolved photoelectron spectroscopy denoted as pump-repump-continuous wave-photoelectron spectroscopy (prp-cw-pes). This scheme is comprised of two femtosecond laser (pump) pulses under cw illumination (probe). By changing the time-delay between pump and repump lasers one can manipulate the populations of vibronic levels in electronic excited states. The cw laser acts on for a long time and establishes resonance between excited states and the continuum photo-ionized states. Sharp spectra can be obtained from the resonance condition [formula: see text]. The intensities in the spectra are sensitive to the time-delay between the pump-repump pulses, but only depend on the populations of excited states, not the phase relations (coherence). As a result, each time-delayed snapshot spectrum is a weighted sum of so-called fingerprints, where a fingerprint is the vibrationally resolved photoelectron spectrum for a single vibronic excited state. The latter information can potentially be simulated reliably using vibronic models and wave packet propagation methods. In the easiest application of the experiment, different time-delays produce different spectra, for a single molecular system. This wealth of experimental data can be fitted to an, ideally small, set of theoretical fingerprints by adjusting the populations as fitting parameters. This technique might be able to distinguish between closely related molecular species. Adopting a different viewpoint, the proposed scheme can also be employed to monitor the time-dependent dynamics by changing the phase relationship between the pump and repump laser that can be viewed as a "control mechanism" employed in wave packet interferometry. Simplifications arise as the change in the spectra is due to the changing populations, not because of the coherence. In this paper, we outline the ideas behind the scheme and illustrate the ideas theoretically using simple model systems.

16.
J Chem Theory Comput ; 12(1): 114-32, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26614092

RESUMO

In this work, several variations of the multireference equation of motion (MR-EOM) methodology are investigated for the calculation of excitation spectra. These variants of MR-EOM are characterized by the following aspects: (1) the operators included in the sequence of similarity transformations of the molecular electronic Hamiltonian, (2) whether permutational symmetries (i.e., hermitization, vertex symmetry) are imposed on the final elements of the similarity-transformed Hamiltonian, (3) the size of the manifold over which the similarity-transformed Hamiltonian is diagonalized, (4) whether the two-body cumulant is included in the expressions defining the amplitudes and the elements of the transformed Hamiltonian. The MR-EOM methods are benchmarked for the calculation of the excitation energies of a test set of organic molecules. With the availability of reliable benchmark data for this test set, it is possible to gauge the relative accuracy of these approaches. We also further examine a subset of the MR-EOM methods for the calculation of the excitation energies of some transition-metal complexes. These systems prove to be particularly difficult for single-reference coupled-cluster methods.

17.
J Phys Chem A ; 119(50): 12551-61, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26517305

RESUMO

Raman vibrational shifts of small parahydrogen (pH2), orthodeuterium (oD2), and paratritium (pT2) clusters with respect to the free molecules are calculated by combining a first order perturbation theory approach with Langevin equation Path Integral Ground State (LePIGS) simulations [ J. Phys. Chem. A 2013 , 117 , 7461 ]. Our theoretical predictions are compared to existing cryogenic free jet expansion results for pure (pH2)N clusters [ Phys. Rev. Lett. 2004 , 92 , 223401 ] and to new measurements for (oD2)N clusters reported here. This method has been successfully used before to predict the Raman vibrational shifts of (pH2)N clusters [ J. Chem. Phys. 2014 , 141 , 014310 ]. The 6-D interaction potential of Hinde [ J. Chem. Phys. 2008 , 128 , 154308 ] is reduced to 1-D using the Adiabatic Hindered Rotor approximation to yield effective pair potentials for both molecules being in the ground vibrational state, and for one of them carrying one quantum of vibrational excitation. These reduced 1-D potentials are fitted to a Morse Long Range analytic form for later convenience. Good agreement between experiment and theory is found for the smaller clusters, but significant deviations remain for the larger ones.

18.
J Chem Phys ; 142(19): 194111, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26001451

RESUMO

This paper presents the first application of the multireference equation of motion coupled-cluster (MR-EOMCC) approach to the calculation and characterization of excitation energies of transition metal complexes. The calculated MR-EOM excitation energies are compared with experimental UV/Vis. band maxima, Brueckner based similarity transformed equation of motion (STEOM) calculations and Brueckner based equation of motion coupled cluster (EOM-CCSD(T)) calculations, as well as results calculated with other methods from the literature. The agreement of the excitation energies with experiment is found to be reasonable, and suitable rationalization is given for the discrepancies. An orbital selection scheme is introduced, which can be employed to extend the applicability of the MR-EOMCC methodology to considerably larger systems.

19.
J Chem Phys ; 140(8): 081102, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24588141

RESUMO

The novel multireference equation-of-motion coupled-cluster (MREOM-CC) approaches provide versatile and accurate access to a large number of electronic states. The methods proceed by a sequence of many-body similarity transformations and a subsequent diagonalization of the transformed Hamiltonian over a compact subspace. The transformed Hamiltonian is a connected entity and preserves spin- and spatial symmetry properties of the original Hamiltonian, but is no longer Hermitean. The final diagonalization spaces are defined in terms of a complete active space (CAS) and limited excitations (1h, 1p, 2h, …) out of the CAS. The methods are invariant to rotations of orbitals within their respective subspaces (inactive, active, external). Applications to first row transition metal atoms (Cr, Mn, and Fe) are presented yielding results for up to 524 electronic states (for Cr) with an rms error compared to experiment of about 0.05 eV. The accuracy of the MREOM family of methods is closely related to its favorable extensivity properties as illustrated by calculations on the O2-O2 dimer. The computational costs of the transformation steps in MREOM are comparable to those of closed-shell Coupled Cluster Singles and Doubles (CCSD) approach.

20.
J Chem Phys ; 138(13): 134108, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23574209

RESUMO

Extensions of multireference equation of motion coupled cluster theory (MR-EOMCC) [D. Datta and M. Nooijen, J. Chem. Phys. 137, 204107 (2012)] are presented that include additional correlation effects into the global, internally contracted similarity transformation, induced by the cluster operators. As a result the final uncontracted diagonalization space can be more compact than in the parent MR-EOMCC approach. A wide range of applications, including transition metal atomic excitation spectra, a large set of valence excited states of organic compounds, and potential energy surfaces of ground and excited states of butadiene, is presented to benchmark the applicability of the parent MR-EOMCC methodology and its new variations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...